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Abstract: 

Stress is a significant health concern, affecting both mental and 

physical well-being. Sleep patterns play a vital role in stress 

regulation, offering insights into individual stress levels. The 

Smart-Yoga Pillow (SaYoPillow) dataset provides an innovative 

method for monitoring sleep parameters using sensor-based data 

collection. Traditional stress assessment methods, such as self-

report surveys and medical consultations, suffer from 

inconsistencies and lack real-time monitoring. The evolution of 

stress analysis has progressed from psychological assessments to 

wearable technologies with real-time biometric tracking. 

Advancements in machine learning enable predictive models to 

analyze sleep-related parameters such as heart rate, respiratory 

rate, body movements, oxygen saturation, and brainwave activity 

for stress classification. Despite wearable sensors and mobile 

health applications, existing systems face challenges like high 

costs, lack of personalization, and data reliability issues. AI-

driven models offer scalable, automated stress detection with 

high accuracy. This study addresses the urgent demand for 

personalized mental health solutions that monitor stress without 

active user input. Predictive stress analysis using deep learning 

enables proactive stress management, providing early warnings 

and corrective measures. By integrating Naïve Bayes classifiers, 

deep neural networks (DNNs), and decision tree models, this 

research demonstrates a non-invasive, AI-powered stress 

prediction system. Continuous stress monitoring can help 

individuals improve their sleep quality and overall well-being. 

The integration of AI in healthcare allows for real-time feedback, 

aiding in early stress detection and intervention. Such 

advancements contribute to preventive healthcare by reducing the 

risk of stress-induced illnesses. With growing interest in AI-

driven health applications, this research supports the development 

of smart healthcare solutions. Future studies can explore the 

integration of additional biometric indicators for improved stress 

prediction. The findings of this research pave the way for 

advanced AI-powered mental health interventions and real-time 

stress management systems. 
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I. INTRODUCTION 

 
Stress is a prevalent issue affecting millions worldwide, 

contributing to various physical and mental health disorders. 

Prolonged stress can lead to conditions such as anxiety, 

depression, cardiovascular diseases, and sleep disorders. Among 

the various factors influencing stress levels, sleep plays a crucial 

role in maintaining mental well-being and physiological stability. 

Poor sleep quality and irregular sleep patterns are often linked to 

heightened stress levels, making sleep monitoring an essential 

component in stress analysis. The Smart-Yoga Pillow 

(SaYoPillow) dataset provides a novel approach to studying the 

relationship between sleep patterns and stress. Traditional stress 

assessment methods, such as psychological evaluations and 

medical consultations, often rely on subjective self-reporting, 

making them prone to inaccuracies and biases. 

 

Additionally, conventional wearable health monitoring devices 

may lack comprehensive sleep analysis capabilities, making real-

time stress prediction challenging. With the advent of machine 

learning (ML) and deep learning (DL), automated stress detection 

using sleep pattern analysis has become more feasible. By 

leveraging artificial intelligence (AI) techniques such as Naïve 

Bayes classification, deep neural networks (DNNs), and decision 

tree models, this study aims to develop an accurate and efficient 

predictive system for stress analysis based on sleep data. The core 

objective of the research is to build a predictive stress analysis 

model that classifies stress levels based on sleep-related features 

extracted from the SaYoPillow dataset. 

 

The implementation involves data pre-processing, feature scaling, 

model training, and evaluation using different AI algorithms to 

determine the most effective approach for predicting stress. The 

significance of the project lies in its potential to improve mental 

well-being by offering an intelligent, non-intrusive, and proactive 

stress monitoring system. By integrating AI-driven predictive 

analytics with real-time sleep data, this research contributes to the 

growing field of smart healthcare, preventive stress management, 

and personalized mental health solutions. 

 

II. LITERATURE SURVEY 

A work by Shruti Gedam et.al. [1] Investigates the stress 

detection approaches adopted by considering sensory devices 

such as wearable sensors, Electrocardiogram (ECG), 

Electroencephalography (EEG), and Photoplethysmography 

(PPG) depending on various environments like driving, studying, 

and working. Work by Elena Smets et.al. 

 

[2] Compares different machine learning techniques for the 

measurement of stress based on physiological responses in a 

controlled environment. Electrocardiogram (ECG), galvanic skin 

response (GSR), temperature and respiration were measured in 

this work. Six machine learning algorithms were used for the 

study. This work demonstrated that dynamic Bayesian network 

and generalized support vector machines promoted best 

classification results. Widasari et al. 

 

[3] Focused on obstructive sleep apnea (OSA), a potentially 

serious sleep disorder. It causes repeated cessations of breathing 

during sleep. The authors used only ECG signals, which are easy 

to conduct and record. Heart rate variability (HRV) spectrum 

analysis was applied to feature extraction, and a decision tree-

based support vector machine classifier was used to measure 
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the four parameters of sleep quality: sleep onset latency, total 

sleep time, sleep efficiency, and delta-sleep efficiency based on 

30-s segments of ECG signals. Sleep quality was estimated using 

the automatic sleep stage and then was compared with PSG data. 

Chung et al. 

[4] Presented an approach to classify sleep stages via a low cost 

and noncontact multimodal sensor fusion, which extracted sleep-

related vital signals from radar signals and a sound-based 

context-awareness technique. Furthermore, they incorporated 

medical/statistical knowledge to determine personal-adjusted 

thresholds and device post processing and compared sleep stage 

classification performance between a single sensor and sensor 

fusion algorithms. Li et al. 

[5] Developed the smart pillow to provide a relatively easy 

method of observing sleep conditions, including temperature and 

humidity, by strategically implanting the respective sensors 

inside the pillow. They extracted sleep patterns via statistical 

analysis, and the body temperature was inferred via fuzzy logic if 

the head-on position was stable for >15 min. Lee et al. 

 

[6] Proposed a sleep monitoring system that can detect sleep 

movement and posture using a Microsoft Kinect v2 sensor 

(Redmond, WA, USA) without any wearable device. However, in 

the proposed system, the depth sensor does not work if a blanket 

is covering the human body. Liu et al. 

[7] Proposed Wi-Sleep, a sleep monitoring system based on Wi-

Fi signals, which continuously collects fine-grained wireless 

channel state information (CSI) around a person. 14 From the 

CSI, it extracts rhythmic patterns associated with respiration and 

abrupt changes due to body movements. Lin et al. 

[8] Developed a noncontact and cost-effective sleep monitoring 

system, Sleep Sense, for continuously monitoring sleep status, 

including on-bed movement, bed exit, and breathing section. It 

constitutes three parts: a radar-based sensor, radar demodulation 

module, and sleep status-recognition framework. It extracts 

several time- and frequency-domain features for the sleep-

recognition framework. Huang et al. 

. [9] proposed a classification of nasal and mouth breathing using 

the thermography of the participant. The measurement used the 

relative temperature variations of different facial regions to 

classify mouth or nasal breathing. This measurement is 

particularly relevant to the health and well being of individuals, 

as it can be used to detect early signs of sleep disorders or 

indicate sleep quality. Jakkaew et al. 

[10] presented the noncontact respiration and body movement 

monitoring system. Automatic region of interest extraction via 

temperature and breathing motion detection is based on 

integrated image processing to obtain respiration signals. As 

thermal imaging cameras have various viewing angles, they are 

easy to install in bedrooms. A signal processing technique is used 

to estimate respiration and body movement from a sequence of 

the thermal video. 

[11] developed a noninvasive sleep monitoring system to 

distinguish sleep disturbances. The prototype system contains an 

infrared depth sensor, RGB camera, and four-microphone array to 

detect three events, namely motion, lighting, and sound events. 

Siyang et al. 

 
[12] developed an Internet of Things (IoT) solution to monitor 

sleep based on a data pillow system. They installed FSRs under 

the pillow to collect breathing data, reporting that the IoT data 

pillow can detect breathing signal differences among normal 

respiration, hypopnea, and apnea. Bao et al. 

[13] proposed a noncontact human sleep monitoring method that 

characterizes sleep stages via two aspects of body motion and 

respiration and compares them with the data acquired by 

traditional wristband products. Veiga et al. 

[14] proposed an IoT-based sleep quality monitoring pillow that 

tracks temperature, humidity, luminosity, sound, and vibration. 

He et al. 

[15] presented a flexible sleep monitoring belt with a 

microelectromechanical system triaxial accelerometer and 

pressure sensor to detect vital signs, snoring events, and sleep 

stages. They tried to detect heart and respiration rates, to 

recognize snoring, and to classify sleep stages. The test results 

measured by PSG were used as the gold standards for 

comparison. Im et al. 

[16] proposed a noncontact sleep monitoring system using UWB 

and a photoplethysmogram (PPG). The proposed system 

comprised a UWB radar, environmental sensor board, and PPG 

sensor. The UWB radar measures the sleep-breathing and heart 

rates and movements of the user. The PPG sensor measures the 

heart rate and movements. Renevey et al. 
 

III. PROPOSED METHODOLOGY 

Stress is a significant health concern that affects both mental and 

physical well-being, with sleep patterns being one of the key 

indicators of stress levels. This project aims to develop a 

predictive stress analysis model by utilizing sleep pattern data 

collected from the Smart-Yoga Pillow (SaYoPillow) dataset. The 

SaYoPillow is an advanced sleep monitoring device that gathers 

real-time data such as sleep duration, movement, heart rate, and 

other physiological parameters to assess stress levels. By 

applying machine learning and deep learning techniques, the 

system can classify and predict an individual's stress level, 

offering insights for stress management and prevention. 

 

Figure 1: Proposed DenseNet with DTC system architecture 

 
Key Components of the Code: 

1. GUI Development (Tkinter): 

● Provides an interactive interface for users. 

● Allows users to upload datasets, preprocess, train 

models, and make predictions 
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● Displays model performance metrics and results. 

2. Data Handling and Preprocessing: 

● Reads the dataset using Pandas. 

● Resamples the dataset to balance stress levels. 

● Normalizes features using StandardScaler. 

● Splits the dataset into training and testing sets. 

3. Machine Learning & Deep Learning Models: 

● Naïve Bayes Classifier: A simple probabilistic model 

used as the baseline. 

● Deep Neural Network (DNN): A more advanced model 

using multiple layers. 

● Decision Tree Classifier: Extracts meaningful features 

from the trained DNN. 

4. Performance Evaluation: 

● Calculates accuracy, precision, recall, and F1-score. 

● Generates a confusion matrix for model evaluation. 

● Uses Matplotlib and Seaborn for visualization. 

5. Prediction Module: 

● Allows users to load test data. 

● Applies the trained model for stress level classification. 

● Displays results in a structured format. 

Applications: 

1. Personalized Stress Monitoring: AI-driven models can 

continuously track sleep patterns and physiological 

signals, providing real-time insights into stress levels 

without requiring active user input. 

2. Smart Healthcare Systems: Integration of AI-powered 

stress prediction into wearable devices and mobile 

health applications allows for non-intrusive stress 

detection and intervention. 

3. Preventive Mental Health Solutions: Predictive stress 

analysis helps individuals adopt corrective measures 

before their stress levels become critical, reducing the 

risk of stress-induced disorders. 

Advantages: 

1. Real-Time and Continuous Monitoring: Unlike 

traditional stress assessments, AI-based systems provide 

continuous stress tracking and early warnings, enabling 

proactive management. 

2. Non-Intrusive and Automated Detection: AI-driven 

models analyze biometric data without requiring manual 

input, ensuring a seamless and efficient stress 

monitoring process. 

3. Enhanced Accuracy and Personalization: Machine 

learning models adapt to an individual’s unique sleep 

patterns and physiological responses, improving the 

reliability and effectiveness of stress prediction. 

4. Early Stress Detection and Intervention: AI-driven 

models provide early warnings, allowing individuals to 

take preventive measures before stress levels become 

severe. 

5. Improved Sleep Quality: Continuous monitoring and 

insights help users adjust sleep patterns, leading to better 

rest and reduced stress. 

6. Scalability and Efficiency: AI-based stress monitoring 

systems can be deployed on a large scale, making them 

accessible to a broad population. 

7. Reduction of Healthcare Costs: Early detection of 

stress-related conditions can help reduce hospital visits 

and medical expenses by preventing severe health 

issues. 

8. Integration with Wearable Devices: AI models can be 

incorporated into smartwatches, fitness trackers, and 

mobile health apps for seamless stress tracking. 

9. Objective and Data-Driven Insights: Unlike 

self-report surveys, AI-based stress monitoring 

eliminates recall bias and provides accurate, data-driven 

assessments. 

IV. EXPERIMENTAL ANALYSIS. 
 

Figure 2: GUI of proposed head gesture recognition 

system after applying model building and training 

using Navie Baye’s classifier. 

● The GUI after the system has trained the Navie Baye’s 

classifier. The text console displays messages indicating 

that the model has either been loaded (if previously 

saved) or trained from scratch. It also shows training 

results, including performance metrics like accuracy, 

precision, recall, and F1-score, providing immediate 

feedback on the classifier’s performance in the training 

and testing data. 

 

Figure 3: Confusion matrix of Navie Baye’s classifier. 

● The confusion matrix generated for Navie Baye’s 

classifier is shown in Figure 3. The matrix is typically 

rendered as a heatmap where rows represent the actual 

classes and columns represent the predicted classes. The 

numbers in each cell highlight the count of correct and 

misclassified instances, offering a detailed view. 
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Figure 4:Performance comparison graph of Navie Bayes and 

DNN model. 

● Consolidates the performance metrics of all two models 

into a single comparative graph. It typically includes bar 

charts or line graphs that display metrics such as 

accuracy, 53 precision, recall, and F1-score for each 

model. This visual comparison clearly shows the 

incremental improvements gained by using more 

complex architectures, with the DNN with DCT model 

usually outperforming Navie Baye’s Classifier 

 

 
● The bar chart compares the performance of the Naïve 

Bayes Classifier and the DNN Model using four 

metrics: Accuracy (blue), Precision (red), Recall 

(green), and F1-score (yellow). The DNN Model 

significantly outperforms the Naïve Bayes Classifier 

across all metrics, achieving near-perfect scores, while 

the Naïve Bayes Classifier shows very low values for all 

performance measures. 
 

 

Figure 5: Sample predictions on test data using the proposed 

DNN model. 

● Fig 5: Shows example predictions made on test data by 

the DNN model. This may include a table or a visual 

overlay on the test dataset, where the actual labels are 

compared with the model’s predictions. It serves as a 

practical demonstration of the model’s real-world 

applicability, validating the system’s ability to correctly 

predict stress. 

 
 

Algorithm name Accuracy Precision Recall F1-Score 

Navies Baye’s 

Classifier 

19.25% 3.85% 20.0% 6.45% 

DNN Model 100.0% 100.0% 100.0% 100.0% 

Table 1: Summarizing the performance metrics for the two 

models. 

● Accuracy: This metric indicates the overall percentage 

of correct predictions out of all predictions made by the 

model. For example, the Proposed DNN Model achieved 

an accuracy of approximately 100%, meaning it correctly 

classified 100% of the input samples. In contrast, the 

Navie Bayes classifier had a much lower accuracy of 

around 19.25%, suggesting it struggles with the 

complexity of sleep patterns. 

● Precision: Precision measures the proportion of correct 

identifications. A high precision value (such as 100% for 

the DNN model) indicates that when the model predicts a 

certain mobile pattern, it is highly likely to be correct. 

The Navie Bayes, with a precision of about 3.85%, show 

a higher rate of false positives compared to the more 

sophisticated models. 

● Recall: Recall (or sensitivity) quantifies the proportion of 

actual positives that were correctly identified. The DNN 

model’s recall of 100% means that it successfully 

captures nearly all instances, while the lower recall 

values of the Navie Bayes model indicate they are 

missing predictions. 

● F1-score: The f1-score is the harmonic mean of precision 

and recall, providing a balance between the two. It is 

particularly useful when dealing with imbalanced classes. 

The DNN model’s f1-score of 100% reflects its superior 

balance between correctly predicting the gesture classes 

and minimizing false negatives and positives. In contrast, 

the Navie Bayes f1-score of around 6.45% highlights its 

overall poor performance in this regard. Overall, the table 

and corresponding explanation demonstrate how the 

proposed DNN model significantly outperforms the 

Navie Bayes classifier, offering much higher accuracy, 

precision, recall, and f1-score. This underscores the 

advantage of using a hybrid deep learning and ensemble 

approach for stress prediction. 

● Overall, the table and corresponding explanation 

demonstrate how the proposed DNN model significantly 

outperforms the Navie bayes classifier, offering much 

higher accuracy, precision, recall, and f1-score. This 

underscores the advantage of using a hybrid deep 

learning and ensemble approach for stress prediction. 

 

V. CONCLUSION 
 
The Predictive Stress Analysis Based on Sleep Patterns Using the 

Smart-Yoga Pillow (SaYoPillow) Dataset successfully demonstrates 

how deep learning and machine learning techniques can be leveraged to 

assess stress levels. By implementing Naïve Bayes Classifier as the 

existing model and Deep Neural Networks (DNN) with Decision Tree-

based Feature Extraction as the proposed model, we effectively 

improved the classification accuracy of stress prediction. The 

preprocessing steps, feature extraction, and model training ensured that 

the system could learn meaningful patterns from sleep-related data, 

leading to more reliable stress level predictions. The graphical 

comparisons and performance metrics validated that DNN with Decision 

Tree Feature Extraction outperformed traditional classification 

approaches, proving its effectiveness in stress detection.Future 

advancements in this project can include integrating real-time IoT-based 

stress monitoring systems, where sleep data is continuously collected 

and analyzed using edge AI for instant feedback. The model can also be 

enhanced with additional physiological and behavioral parameters such 

as heart rate variability, oxygen levels, or even wearable sensor data to 

improve prediction accuracy. Moreover, by incorporating 
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personalized recommendations based on stress levels, the system can 

evolve into a complete wellness solution that not only detects stress 

but also suggests interventions such as guided meditation, lifestyle 

adjustments, and personalized sleep strategies. Expanding the dataset 

with diverse demographics and sleep conditions would further 

generalize the model, making it applicable to a wider audience in 

healthcare and mental wellness sector 
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